
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Tel.: +90 2

E-mail addr
Journal of Sound and Vibration 294 (2006) 966–980

www.elsevier.com/locate/jsvi
Harmonic differential quadrature-finite differences coupled
approaches for geometrically nonlinear static and dynamic

analysis of rectangular plates on elastic foundation
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Abstract

The geometrically nonlinear static and dynamic analysis of thin rectangular plates resting on elastic foundation has been

studied. Winkler–Pasternak foundation model is considered. Dynamic analogues Von Karman equations are used. The

governing nonlinear partial differential equations of the plate are discretized in space and time domains using the harmonic

differential quadrature (HDQ) and finite differences (FD) methods, respectively. The analysis provides for both clamped

and simply supported plates with immovable inplane boundary conditions at the edges. Various types of dynamic loading,

namely a step function, a sinusoidal pulse and an N-wave, are investigated and the results are presented graphically.

The accuracy of the proposed HDQ–FD coupled methodology is demonstrated by the numerical examples.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The practical importance of vibration analysis of plates with or without on elastic foundation has been
increased in structural, aerospace, civil and mechanical engineering applications. Nonlinear static and
dynamic analyses of plates of various shapes have been carried out by various researchers [1–4]. More detailed
information can be found in a recent review paper by Sathyamorth [5]. Nath et al. [6] presented the finite
differences methods for spatial discretization and Houbolt’s time marching discretization to study the dynamic
analysis of rectangular plates resting on elastic foundation. Dumir [7] and Dumir and Bhaskar [8] have
investigated nonlinear static and dynamic analysis of rectangular plates on elastic foundation employing the
orthogonal point collocation method. A few studies concerning to static and dynamic analysis of rectangular
plates resting on elastic foundation have been carried out, namely by Cheung and Zienkiewicz [9] and Liew
et al. [10] and Liu [11].

In structural mechanics, differential quadrature (DQ) methods are becoming popular as many important
researchers demonstrated their successful applications of the method to the static, vibration and buckling
analysis of various type beams, plates and shells. These applications include the work of Bert and his
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b dimensions of plate in x- and y-directions
Aij weighting coefficients for first-order deri-

vative
Bij weighting coefficients for second-order

derivative
C non-dimensional damping coefficients,

Eq. (20)
D flexural rigidity of plate
Dij weighting coefficients for fourth-order

derivative
E modulus of elasticity
FD finite differences
G non-dimensional Pasternak parameter,

Eq. (20)
Gf shear parameter of Pasternak foundation
hk(x) Lagrange interpolated functions
h, hf thicknesses of the plate and foundation

HDQ harmonic differential quadrature
kf stiffness parameter of Winkler founda-

tion
K non-dimensional Winkler parameter,

Eq. (20)
mr dimensionless mass ratio, Eq. (20)
N number of discrete points
Nx, Ny number of discrete points in the x- and

y-directions
P non-dimensional load parameter
Dt time steps
T time
U, V, W displacement components
Wc central deflection
xi discrete points in the variable domain
n Poisson’s ratio
r, rf mass density of the foundation and plate

material
t non-dimensional time parameter, Eq. (20)
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co-workers [12–15], Liew et al. [16–18], Shu et al. [19,20], Striz et al. [21,22], Civalek et al. [23–27], and Wu and
Liu [28]. Details on the development of the DQ methods and on its applications to the structural and fluid
mechanics problems may be found in a well-known paper by Bert and Malik [14].

The practical importance of dynamic analysis of plates and shells on elastic foundation has been increased
in structural, aerospace, biomechanics, civil and mechanical engineering applications. There are many
situations such as seismic tests, nuclear explosions, earthquakes, etc. in which these structures are subjected to
transient loads and large amplitudes of motion may occur. The objective of this study is to present an
approximate numerical solution of the Von Karman–Donnel type governing equations for the geometrically
nonlinear analysis of rectangular plates resting on Winkler–Pasternek elastic foundations under the various
types of dynamic loading. To the author’s knowledge, it is the first time the DQ method has been successfully
applied to thin, isotropic rectangular plates resting on an elastic foundation problem for the geometrically
nonlinear dynamic analysis.
2. Differential quadrature (DQ) method

In the DQ method, a partial derivative of a function with respect to a space variable at a discrete point is
approximated as a weighted linear sum of the function values at all discrete points in the region of that
variable. For simplicity, we consider a one-dimensional function u(x) in the [�1, 1] domain, and N discrete
points. Then the first derivatives at point i, at x ¼ xi is given by

uxðxiÞ ¼
qu

qx

����
x¼xi

¼
XN

j¼1

AijuðxjÞ; i ¼ 1; 2; . . . ;N, (1)

where xj are the discrete points in the variable domain, u(xj) are the function values at these points and Aij are
the weighting coefficients for the first-order derivative attached to these function values. Bellman et al. [29]
suggested two methods to determine the weighting coefficients. The first one is to let Eq. (1) be exact for the
test functions

ukðxÞ ¼ xk�1; k ¼ 1; 2; . . . ;N, (2)
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which leads to a set of linear algebraic equations

ðk � 1Þxk�2
i ¼

XN

j¼1

Aij xk�1
j ; for i ¼ 1; 2; . . . ;N and k ¼ 1; 2; . . . ;N, (3)

which represents N sets of N linear algebraic equations. Another way to determine the weighting coefficients is
to employ harmonic functions, named the harmonic differential quadrature (HDQ). HDQ has been proposed
by Striz et al. [22]. Unlike the DQ that uses the polynomial functions, such as power functions, Lagrange
interpolated, and Legendre polynomials as the test functions, HDQ uses harmonic or trigonometric functions
as the test functions. Shu and Xue proposed an explicit means of obtaining the weighting coefficients for the
HDQ [20]. When the f(x) is approximated by a Fourier series expansion in the form

f ðxÞ ¼ c0 þ
XN=2
k¼1

ck cos
kpx

L
þ dk sin

kpx

L

� �
(4)

and the Lagrange interpolated trigonometric polynomials are taken as

hkðxÞ ¼
sin
ðx� x0Þp

2
� � � sin

ðx� xk�1Þp
2

sin
ðx� xkþ1Þp

2
� � � sin

ðx� xN Þp
2

sin
ðxk � x0Þp

2
� � � sin

ðxk � xk�1Þp
2

sin
ðxk � xkþ1Þp

2
� � � sin

ðxk � xNÞp
2

(5)

for k ¼ 0, 1, 2,y,N. According to the HDQ, the weighting coefficients of the first-order derivatives Aij for i 6¼j

can be obtained by using the following formula:

Aij ¼
ðp=2ÞPðxiÞ

PðxjÞ sin½ðxi � xjÞ=2�p
; i; j ¼ 1; 2; 3; . . . ;N, (6)

where

PðxiÞ ¼
YN

j¼1; jai

sin
xi � xj

2
p

� �
; for j ¼ 1; 2; 3; . . . ;N. (7)

The weighting coefficients of the second-order derivatives Bij for i6¼j can be obtained using the following
formula:

Bij ¼ Aij 2A
ð1Þ
ii � p cot

xi � xj

2

� �
p

h i
; i; j ¼ 1; 2; 3; . . . ;N. (8)

The weighting coefficients of the first- and second-order derivatives A
ðpÞ
ij for i ¼ j are given as

A
ðpÞ
ii ¼ �

XN

j¼1; jai

A
ðpÞ
ij ; p ¼ 1 or 2 and for i ¼ 1; 2; . . . ;N. (9)

The weighting coefficient of the third- and fourth-order derivatives can be computed easily from Aij and Bij by

Cij ¼
XN

k¼1

AikBkj ; Dij ¼
XN

k¼1

BikBkj . (10,11)

Two different types of sampling grids are taken into consideration in this study. A natural, and often
convenient, choice for sampling points is that of equally spaced grid (ES-G) points. These points are given by

Type�I : xi ¼
i � 1

Nx � 1
and yi ¼

i � 1

Ny � 1
(12,13)

in the related directions. Sometimes, the DQ solutions deliver more accurate results with unequally spaced
sampling points. Another choice that is found to be even better than the Chebyshev and Legendre polynomials
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Fig. 1. Geometry and dimensions of rectangular plate on elastic foundation.
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is the set of points proposed by Shu and Richards [19]. These points are given as

Type�II : xi ¼
1

2
1� cos

2i � 1

Nx � 1

� �
p

� �
and yi ¼

1

2
1� cos

2i � 1

Ny � 1

� �
p

� �
(14,15)

in the x- and y- directions, respectively. These type grid points are known the Chebyshev–Gauss–Lobatto or
non-equally spaced grid (NES-G) points.
3. Governing equations

We consider thin rectangular plates resting on Winkler–Pasternak elastic foundation of length a in
x- direction, width b in the y-direction and thickness h in the z-direction. The geometry of a typical rectangular
plate resting on Winkler–Pasternak elastic foundation is shown in Fig. 1. The foundation is modelled in terms
of Winkler parameter kf and shear parameter Gf of the Pasternak model. More detailed information about the
elastic and inelastic foundation models and the analysis of structures on elastic foundation can be found in the
relevant literature [31–37]. Including the normal components of inertial forces and neglecting the damping
of the foundation, the distributed reaction from the elastic foundation on the shell at any instant of time t is
given by

kf w� Gf ðwxx þ b2wyyÞ þ rf hf wtt. (16)

In this study, the plate–foundation interaction is considered and the in-plane and rotary inertia is neglected.
The governing differential equations of motion in terms of non-dimensional displacements components U, V,
and W can be expressed as [6,27]

U ;XX þ
b2

2
ð1� nÞU ;YY þ

b
2
ð1þ nÞV ;XY þW ;X W ;XX þ

b2

2
ð1� nÞW ;YY

� �

þ
b2

2
ð1þ nÞW ;YY W ;XY ¼ 0, ð17Þ

b2V ;YY þ
1

2
ð1� nÞV ;XX þ b

1

2
ð1þ nÞU ;XY þ bW ;Y b2W ;YY þ

1

2
ð1� nÞW ;XX

� �

þ b
1

2
ð1þ nÞW ;X W ;XY ¼ 0, ð18Þ
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W ;XXXX þ 2b2W ;XXYY þ b4W ;YYYY � 12ðW ;XX Þ U ;X þ bnV ;Y þ
1

2
ðW ;X Þ

2
þ

1

2
b2nðW ;Y Þ

2

� �

� 12ðb2W ;YY Þ bV ;Y þ nU ;X þ
1

2
nðW ;X Þ

2
þ

1

2
b2ðW ;Y Þ

2

� �
� 12ð1� nÞb bU ;Y þ V ;X þ bW ;X W ;Y

� 	
W ;XY � 12ð1� n2ÞP� KW � GðW ;XX þ b2W ;YY Þ

þW ;tt þmrW ;tt þ CW ;t ¼ 0. ð19Þ

The non-dimensional quantities in the above equations are defined as

W ¼ w=h; X ¼ x=a; Y ¼ y=b; b ¼ a=b; U ¼ ua=h2; V ¼ na=h2; G ¼ Gf a2=D,

P ¼ qa4=Eh4; t ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ra4h

q
; D ¼ Eh3=12ð1� u2Þ; mr ¼ hf rf =hr; K ¼ kf a4=D

C ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gha4=D

q
, ð20Þ

where u, n and w are displacement componens in the x-, y-, and z-direction, respectively, h and hf are the
thickness of the plate and foundation, E is Young’s modulus, n is Poisson’s ratio, rf and r are the mass density
of the foundation and the material, K is the stiffness parameters of Winkler foundation, G is the shear
modulus of Pasternak foundation, D is the flexural rigidity, a and b are the sides of plate along x- and y-
directions, t is the time. Using the finite difference (central difference approach) method for the time-wise
integration, the velocity and acceleration at time i, can be expressed as

_ui ¼
1

2Dt
½uiþ1 � ui�1� and €ui ¼

1

ðDtÞ2
½uiþ1 � 2ui þ ui�1�. (21,22)

3.1. Boundary and initial conditions

In the present study the following two types of boundary conditions are considered. For all simply
supported four edges and immovably constrained against in-plane translation (SSSS):

U ¼ V ¼W ¼ 0 and b2
q2W

qY 2
þ n

q2W

qX 2

� �
¼ 0 at Y ¼ 0 and Y ¼ 1, (23)

U ¼ V ¼W ¼ 0 and
q2W

qX 2
þ n b2

q2W

qY 2

� �
¼ 0 at X ¼ 0 and X ¼ 1. (24)

For all clamped four edges and immovably constrained against in-plane translation (CCCC):

U ¼ V ¼W ¼ 0 and
qW

qY

� �
¼ 0 at Y ¼ 0 and Y ¼ 1, (25)

U ¼ V ¼W ¼ 0 and
qW

qX

� �
¼ 0 at X ¼ 0 and X ¼ 1. (26)

Furthermore, the zero initial conditions are assumed. These are given as

W ¼ 0 and
qW

qt

� �
¼ 0 at t ¼ 0. (27,28)

In this stage, the HDQ and FD methods are applied to discretize the derivatives for spatial and time domain in
the governing equations, boundary and initial conditions. After spatial and time discretization, DQ form of
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the governing equations, boundary and initial conditions are given as [27]

XNx

k¼1

BikUkj þ b2d1

XNy

k¼1

BjkUik þ bd2

XNy

m¼1

Ajm

XNx

k¼1

AikVkm

þ
XNx

k¼1

AikW kj

XNx

k¼1

BikW kj þ b2d1

XNy

k¼1

BjkW ik

" #

þ b2d2

XNy

k¼1

AjkW ik

XNy

m¼1

Ajm

XNx

k¼1

AikW km ¼ 0, ð29Þ

b2
XNx

k¼1

BjkVik þ d1

XNx

k¼1

BikV kj þ bd2

XNy

m¼1

Ajm

XNx

k¼1

AikUkm

þ b
XNy

k¼1

AjkUik d1

XNx

k¼1

BikW kj þ b2
XNy

k¼1

BjkW ik

" #
þ bd2

XNy

k¼1

AikW kj

XNy

m¼1

Ajm

XNx

k¼1

AikW km ¼ 0, ð30Þ

XNx

k¼1

DikW kj þ 2b2
XNy

m¼1

Bjm

XNx

k¼1

BikW km þ b4
XNy

k¼1

DjkW ik

� 12
XNx

k¼1

BikW kj

 ! XNx

k¼1

AikUkj þ bn
XNy

k¼1

AjkUik þ
1

2

XNx

k¼1

Aik W kj

 !2

þ b2n
XNy

k¼1

Ajk Uik

 !2
2
4

3
5

8<
:

9=
;

� 12 b2
XNy

k¼1

Bjk W ik

 !
b
XNy

k¼1

AjkV ik þ n
XNx

k¼1

AikW kj þ
1

2
n
XNx

k¼1

Aik W kj

 !2

þ b2
XNy

k¼1

Ajk Uik

 !2
2
4

3
5

8<
:

9=
;

� 12ð1� nÞb b
XNy

k¼1

AjkUik þ
XNx

k¼1

AikVkj þ b
XNx

k¼1

AikW kj

XNy

k¼1

AjkW ik

" #XNy

m¼1

Ajm
XNx

k¼1

AikW km

� 12ð1� n2ÞP� KW ik � G
XNx

k¼1

Bik W kj þ b2
XNy

k¼1

Bjk W ik

 !
þ

1

ðDtÞ2
ðW iþ1 � 2W i þW i�1Þ

þmr
1

ðDtÞ2
ðW iþ1 � 2W i þW i�1Þ

� �
þ C

1

2Dt
ðW iþ1 �W i�1Þ

� �
. ð31Þ

For SSSS boundary conditions:

Ui1 ¼ V i1 ¼W i1 ¼ 0 and UiN ¼ ViN ¼W iN ¼ 0, (32)

U1j ¼ V1j ¼W 1j ¼ 0 and UNj ¼ V Nj ¼W Nj ¼ 0, (33)

XNy

k¼1

BikW k1 þ nb2
XNx

k¼1

BjkW j1 ¼
XNy

k¼1

BikW kN þ nb2
XNx

k¼1

BjkW jN ¼ 0, (34)

b2
XNy

k¼1

BjkW 1k þ n
XNx

k¼1

BikW 1j ¼ b2
XNy

k¼1

BjkW iN þ n
XNx

k¼1

BikW kN ¼ 0. (35)

For CCCC boundary conditions:

Ui1 ¼ V i1 ¼W i1 ¼ 0 and UiN ¼ ViN ¼W iN ¼ 0, (36)

U1j ¼ V1j ¼W 1j ¼ 0 and UNj ¼ V Nj ¼W Nj ¼ 0. (37)
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XNy

k¼1

Aik W k1 ¼
XNy

k¼1

Aik W kN ¼ 0, (38)

XNy

k¼1

Ajk W 1k ¼
XNy

k¼1

Ajk W iN ¼ 0. (39)

For initial conditions:

W 1 ¼ 0 and
XtN

t¼1

AjkW 1t ¼ 0, (40)

where Aij, Bij and Dij are the weighting coefficients for the first, second and fourth-order derivatives which can
be determined as discussed in section two, d1 ¼ ð1� nÞ=2 and d2 ¼ ð1þ nÞ=2. The set of nonlinear algebraic
Eqs. (29)–(40) can be solved for {U}, {V} and {W} using nonlinear algorithms such as Newton–Raphson
method [4,30].

4. Numerical applications

The title problem is analysed and some of HDQ–FD results are compared with results in the open literature
[6–8] to show the applicability and efficiency of HDQ–FD coupled methodology. A uniform step load of
infinite duration, sinusoidal loading of finite duration ðt ¼ 0:16Þ, and N-shaped pulse load of finite ðt ¼ 0:2Þ
duration (Fig. 2) have been considered.

First of all, to check whether the purposed formulation and programming are correct, a clamped immovable
plate without an elastic foundation is analysed. The load–central displacement curve of clamped immovable
rectangular ðb=a ¼ 0:5Þ and square plate ðb=a ¼ 1Þ under uniform distributed load is compared in Fig. 3 with
the results of Dumir and Bhaskar [8]. The static response of clamped and simply supported immovable square
plates on Winkler–Pasternak foundations is depicted in Figs. 4a and b for various values of the foundation
parameters, K and G. The obtained results agree excellently with those of Dumir and Bhaskar [8] solution.
τ

P
P

τ

0.16

P

10

τ = 0.2

Load I: Uniform step

load of infinite duration

Load II: Sinusoidal

loading of finite duration

Load III: N-shaped pulse

Fig. 2. Dynamic loads considered in numerical applications.
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Fig. 5 shows the time–deflection curves of the clamped plate under the uniform step load of infinite duration
ðP ¼ 29:14Þ for different damped coefficients, C. The results given by Nath et al. [6] are also plotted in this
figure. The numerical solution of the HDQ method using non equally sampling grid (NES-G) points is
equivalent to the Nath’s results. The damping coefficient C has been found to have significant influence on the
dynamic response of the rectangular plates. From this curve given in Fig. 5, it may be concluded that
decreasing the damping coefficient, C will always result in increased deflection.

The effect of K on the response of simply supported and clamped immovable rectangular plates resting on
elastic foundation under the step load P ¼ 100 is shown in Figs. 6a and b together with the results of Nath
et al. [6]. The present results are in very good agreement with those of Nath et al. [6] for step load. For clamped
support condition, the effect of K on the response of rectangular plate under the N-wave and sinusoidal
0
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0.15

0.18

0.21

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
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0-1

(W
c)

×1
0-1

P

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

P(a) (b)

Fig. 4. Central deflection versus uniform load with different foundation parameters: (a) CCCC plate; (b) SSSS plate (– - – - – Ref. 8

(K ¼ 0.50;G ¼ 0); - - - - - Ref. 8 (K ¼ 100;G ¼ 0); – –+– – Ref. 8 (K ¼ 50;G ¼ 50); –-–-–- Ref. 8 (K ¼ 0;G ¼ 0); & HDQ (K ¼ 0;G ¼ 0);

� HDQ (K ¼ 100;G ¼ 0); J HDQ (K ¼ 50;G ¼ 50); W HDQ (K ¼ 50;G ¼ 0)).

0

0.05

0.1

0.15

0.2

0 8 12 16 20
P

(W
c)

×1
0-1

4

Fig. 3. Load versus central deflection response of clamped plate (n ¼ 0.3) (____ Ref. 8 (k ¼ 0.5); � � � � � � Ref. 8 (k ¼ 1); � HDQ

(k ¼ 0.5); + HDQ (k ¼ 1)).
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Fig. 6. Central deflection versus time for step load with different stiffness parameters of Winkler foundation (P ¼ 100; b/a ¼ 1): (a) CCCC

plate; (b) SSSS plate (& HDQ–FD (K ¼ 0); W HDQ–FD (K ¼ 800); � HDQ–FD (K ¼ 1600); J HDQ–FD (K ¼ 3200); —— Ref. 6

(K ¼ 0); —�— Ref. 6 (K ¼ 800); – –W – – Ref. 6 (K ¼ 1600); - - - - - Ref. 6 (K ¼ 3200)).
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0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
τ

W
c

Fig. 5. Time–displacement curve of clamped plate for various damping coefficients (n ¼ 0.3) (____ Ref. 6 (C ¼ 1.25); – - – - – Ref. 6

(C ¼ 10); – – � —– Ref. 6 (C ¼ 5); & HDQ–FD (C ¼ 1.25); J HDQ–FD (C ¼ 10); K HDQ–FD (C ¼ 5)).
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loading ðP ¼ 200Þ are shown in Figs. 7 and 8. These figures show that the deflections will decrease with
increase in foundation parameter for rectangular plates, and also the response to a step load is higher than the
response to a sinusoidal load. Besides that, the response to a sinusoidal load is higher than the response to a
N-wave load. Figs. 9a and b show the time–deflection curves of the simply supported and clamped plates for
various values of shear parameter (G) of Pasternak foundation. In these figures a uniform step load of infinite
duration ðP ¼ 100Þ has been considered. Figs. 10a and b show the variation of the deflection of the CCCC and
SSSS immovable plates with the shear parameters for different values G (0, 50, 100, 150, 200, 250). For these
figures, a sinusoidal loading ðP ¼ 200Þ of finite duration has been considered. The present results are in very
good agreement with those of Nath et al. [6]. The shear parameter G of the foundation has been found to have
a significant influence on the response of the plates. It is interesting to note that increase in shear modulus
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Fig. 8. Central deflection versus time for sinusoidal load with varying stiffness parameters of Winkler foundation (CCCC plate; P ¼ 200;
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Fig. 7. Central deflection versus time for N-wave load with varying stiffness parameters of Winkler foundation (CCCC plate; P ¼ 200;

b/a ¼ 1; G ¼ 0; n ¼ 0.3) (– –� – – HDQ–FD (K ¼ 400); —B— HDQ–FD (K ¼ 2400)).
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parameter G of the shear layer of a Pasternak foundation causes decrease in the deflections of the rectangular
plates. It is shown that the response to a step load is higher than the response to a sinusoidal load. It is also
interesting to note, however, that the response to a simply supported is higher than the response to a clamped
supported. In Fig. 11, three different types of loading are considered for simply supported immovable square
plate using G ¼ 50. It is shown that the response to a step load is higher than the response to a sinusoidal load
and N-wave load. Figs. 12a and b show the variation of the deflection of the simply supported immovable
rectangular plates with the non-dimensional time parameters for different values mr. For these figures,
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a uniform step load of finite duration ðP ¼ 100Þ and a sinusoidal loading of finite duration ðP ¼ 200Þ have
been considered. The results show clearly that the amplitude of the response has not been changed with
increasing mr. It is interesting to note, however, that the response to a step load is higher than the response to a
sinusoidal load.

The number of sampling points in both x- and y-directions are taken to be 7, 9, 11, and 13. It is observed
that Nx ¼ Ny ¼ 11 is sufficient to obtain accurate results. The percentage errors of the displacements between
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the HDQ solution and the references data of Nath et al. [6] are displayed in Fig. 13a. These error value is
obtained for dynamic analysis of simply supported plates under the infinite duration ðP ¼ 200Þ dynamic step
load for K ¼ 800. The results of this analysis had been given in above as Fig. 11 for different Pasternak (G)
parameter. For this error analysis Pasternak parameter is taken as 50. For the displacements of HDQ method
provide acceptable results with a maximum discrepancy of 3.95% for ES-G points using nine grid points.
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If the grid numbers in each directon are taken as 13, the percentage error is reduced the value 1.02%. The
percentage error is defined by

%Error ¼
References value�HDQ value

References value

� �
� 100

����
����.

For small value of N, the HDQ solutions with the stretched Chebyshev–Gauss–Lobatto grids or non equally
sampling (NES-G) points is much more accurate than those with the conventional equally spaced sampling
grid (ES-G) points. This means that the equally spaced grid (ES-G) points are not reliable in the HDQ
solution of dynamic problems. The displacements of HDQ/FD coupled methodolgy provide acceptable results
with a maximum discrepancy of 4.01% for Dt ¼ 0:2 using NES-G points. If the time steps are taken as
Dt ¼ 0:1, the percentage error is reduced the value 1.13%. It was found that as the time intervals or step sizes
increases, the percentage error also increases. This is clearly shown in Fig. 13b.

5. Conclusions

The geometrically nonlinear dynamic analysis of rectangular plates on Winkler–Pasternak elastic
foundation has been presented using the HDQ method. Typical results obtained by HDQ–FD coupled
methodolgy are compared with the avaliable results for various foundation parameters. The following
conclusions can be obtained from the study:
1.
 It is appeared that the shear parameter G of the Pasternak foundation and stiffness parameter
K of the Winkler foundation have been found to have a significant influence on the dynamic response of the
plates.
2.
 The effect of Winkler parameter K, on the diplacements is greater than the Pasternak parameter, G.

3.
 Increase in shear modulus parameter G of the shear layer of a Pasternak foundation causes decrease in the

deflections of the plate.

4.
 The parameter K of the Winkler foundation has been found to have significant influence on the static

response of the rectangular plates. From the load–deflection curves, it may be concluded that increasing the
foundation parameter, K will always result in decreased deflection.
5.
 Increasing value of mr has a small effect on the amplitude of the response.

6.
 The step load of infinite duration has bigger effect on the dynamic response of the rectangular plates on

elastic foundation compared with the other dynamic loads which considered in this study.

7.
 The damping coefficient C has been found to have significant influence on the dynamic response of the

plate. It may be concluded that decreasing the damping coefficient, C will always result in increased
deflection.
8.
 The response to a simply supported plate is higher than the response to a clamped supported.
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9.
 The results obtained with non-equally sampling grid (NES-G) points are more accurate than the values
calculated by equally sampling grid (ES-G) points.

As a conclusion, the HDQ–FD methodolgy is a simple, efficient, and accurate method for the linear and
nonlinear analysis of immovably clamped and simply supported rectangular plates resting on elastic
foundation.
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